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ABSTRACT
The Internet has emerged as a leading source of information
about the world and its daily occurrences. Platforms like
Wikipedia act as information conduits through which infor-
mational elements (e.g. topic pages) cater to the information
seeking needs of users worldwide. While usage data from
these informational elements help us to predict the informa-
tion seeking behavior of users, especially in reaction to exter-
nal news events, what has been largely ignored in past liter-
ature is the predictive value of the underlying informational
network that connects these elements. In this study, we un-
cover causal linkages in information seeking behavior among
related informational elements on Wikipedia. We demon-
strate that incorporating this causal information leads to
better predictions of page view counts of relevant Wikipedia
pages, when compared to models that ignore such under-
lying causal linkages. We also provide additional evidence
about the efficacy of our approach from the real world, by
performing a judgment study with human annotators. This
research is among the first to investigate and uncover the
value of understanding the underlying relationships among
informational elements.
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1. INTRODUCTION
The Internet has emerged as a leading source of informa-

tion about the world we live in. Over 3 billion of the 7.2
billion people in this world, depend on the Internet to sat-
isfy their informational needs in various forms 1. Wikipedia,
the largest free and multilingual encyclopedia on the Inter-
net, has over 4 million articles on its English version as of
July 2015 and experiences an addition of 1200 articles on
average each day 2. Other online platforms including Q&A

1http://www.internetworldstats.com/stats.htm
2https://en.wikipedia.org/wiki/Wikipedia:Size of Wikipedia
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sites (e.g. Stack Exchange and Quora), Blogs (e.g. Blogger
and Tumblr) and Social Network Sites (SNS) (e.g. Facebook
and Twitter) have also emerged as complementary sources
of information for users on the Internet.

Given the rising popularity of information seeking behav-
ior on the Internet, it has becomes crucial for platform own-
ers to predict informational needs of its users in advance,
and if possible, recommend sources to satisfy these needs.
Predicting user interest in trends and events has been the
subject of some recent analysis in this area [25]. However,
predicting information seeking behavior and the subsequent
recommendations are complicated by the fact that there of-
ten exists significant heterogeneity in user tastes online, and
that the informational needs are quite dynamic in nature,
showing fluctuations and seasonal trends.

The key intuition we exploit in the current study is that
the Internet is composed of informational elements which
cater to specific informational needs of its users. Examples
of informational elements could be a Wikipedia page, a Tum-
blr blog or an entity on Freebase. By analyzing the usage
patterns of these informational elements, we can not only
make inferences about the informational needs of Internet
users, but also make better predictions and recommenda-
tions that would benefit the users. While a number of recent
studies have looked at Wikipedia [27], search queries [13] and
information entities [20] to study related questions, none of
them exploit the fact that these informational elements are
often linked to each other and there often exist non-obvious
causal interactions among these elements that can be ex-
ploited to make better predictions of information seeking
behavior. For instance, an increase in information seeking
propensity on the topic of ”Ebola”might be a direct result of
an increase in information seeking propensity of a related in-
formational element e.g. ”Recent Outbreaks”. Further, this
increase can potentially trigger a further increase in user
interest and subsequent readership of related informational
elements, like ”World Health Organization (WHO)”. Either
way, what is important is to acknowledge that there exists
an underlying network of relatedness between informational
elements, that can be intelligently exploited to improve in-
ferences about information seeking.

In the current study, we use longitudinal data on daily
page views of Wikipedia pages for 4 popular world events
to create a relatedness-graph of linked informational ele-
ments on Wikipedia. For each event, we uncover hidden
and non-obvious causal links among related informational
elements. We then show that by incorporating informa-
tion about these uncovered links in our predictive model,

http://dx.doi.org/10.1145/2854946.2854974


we are able to achieve lower error rates on predicting page
view counts as compared to a baseline model which ignores
such causal links. We also validate the recommendations
made from our causal model using a real-world user judg-
ment study which establishes the efficacy of our approach.
Finally, we make a point about the temporal adaptiveness of
our causal model by showing that the causal graphs we con-
struct evolve in reaction to external events, by demonstrat-
ing distinct network characteristics for the different temporal
phases (e.g. before and after an event).

2. RELATED WORK
There are two distinct lines of work related to the current

research viz. extant work on information seeking and pop-
ularity prediction and research on drawing causal insights
from observational data via statistical models. We next re-
view relevant literature in both these areas.

Information Seeking & Popularity Dynamics:
Predicting trends in information access and content popular-
ity finds application in many areas, including support facil-
itation, media advertising, content caching, revenue estima-
tion, traffic management and macro-economic trends fore-
casting, to name a few. Some prior work [10, 30] show that
there is a correlation in views that contents receive over time.
There are, however, relatively fewer studies that forecast a
value for the actual popularity of content. Lee et al. [16, 17]
use survival analysis to evaluate the probability that a given
content will receive more than some x number of hits. Jamali
and Rangwala [15] predict the popularity of content using
an entropy measure based on the ”user-interest peak”and
the ”co-participatory network”. Szabo and Huberman [30]
present a linear regression model based on the number of
views. This method was also applied by [32, 5] to create
predictive popularity models in different feature spaces.

These existing information seeking models fail to capture
the interdependencies between the different informational el-
ements, something we focus on in the current piece of work.

Causality Models & Analysis:
Advancements in causal inference has led to the develop-
ment of a plethora of new methods, both for causal struc-
ture learning and for making causal predictions (i.e., pre-
dicting the aftermath of interventions). Causal relations
among time series data have been modeled with Granger
causality [31], lagged correlation [19], Bayesian networks
[36], among others. Granger causality measures a cause in
terms of whether it passes Granger Test, i.e., whether a vari-
able helps in predicating the future events for a related vari-
able, beyond what can be predicted by using only historical
events for the latter variable alone. Lagged correlation char-
acterizes causal relations with the correlation between two
time series shifted in time relative to one another. Causal
Bayesian networks interpret causal relations with graphical
models, in which the predecessors of a node are interpreted
as directly causing the variable associated with that node.

A variety of causality mining techniques have been stud-
ied in past work. Chang et al. [11] propose a Granger
causality based influence model for Twitter context sum-
marization. Qui et al. [23] propose Granger graphical mod-
els as an effective and scalable approach for anomaly detec-
tion. Non-parametric generalization of the Granger graph-
ical models called Generalized Lasso Granger (GLG) were

proposed by Bahadori et al.[3] to uncover the temporal de-
pendencies from irregular time series. More recently, Zong
et al. [37] leveraged the causal and dependency structure
among alerts sequences in data center monitoring systems.
Finally, Granger causality has also been used to compute the
cause and effect relationships for pairs of motion trajectories
of a video [21].

In this work, we enrich the information seeking models
with Granger causal dependencies and show that incorpo-
rating insights from predictive causal linkages between in-
formational elements helps improve predictive performance
and enables making better recommendations.

3. PROBLEM FORMULATION
Information seeking has emerged as one of the leading ac-

tivities of users on the Internet today [7, 28]. The informa-
tional needs of a user can be very specific (e.g. searching for
the capital of a particular country) or more navigational and
exploratory (e.g. knowing more about the Ebola outbreak
across the globe) [20, 6]. On the web, this information is sup-
plied to users via a multitude of distribution platforms e.g.
information repositories like Wikipedia, social media plat-
forms like Twitter and Facebook, and Q&A sites like Quora
and Stack Exchange. Each of these platforms, in turn, is an
agglomerate of several informational elements which provide
information on a multitude of topics and entities e.g. Pages
on Wikipedia, Subjects on Stack Exchanges etc. More for-
mally, we define Informational Elements as follows:

Definition: An informational element can broadly be de-
fined as digital atomic units which have some informational
value associated with them. Examples of informational el-
ements could be various named entities, Facebook pages,
Twitter handles, blogs, topics, Wikipedia pages, etc.

While the approaches discussed in this work are broadly
applicable for any informational element, we make use of
Wikipedia pages as the specific instance in this work. The
usage activity logs from these informational elements pro-
vide a useful proxy to both measure and predict the infor-
mational needs of users.

While there have been past work that predicts the pop-
ularity of topics and news events on social media platforms
[33], we argue that the predictive power can be improved by
exploiting causal linkages among related informational ele-
ments. The intuition behind this is that the popularity of
a particular informational element, say after an important
event, would increase popularity of related informational ele-
ments too. Hence, by incorporating popularity information
from related elements, we should be able to make better
predictions about the popularity of our focal informational
element. Predicting popularity of informational elements is
not only instrumental at illuminating our understanding of
how individuals search for information on the Internet, but
is also of key value to advertisers and platforms who wish to
anticipate users’ information needs and evolving preferences
[24] following major events.

In the current study, we demonstrate our approach of
identifying causal linkages, that are often non-obvious at
times, using page-view logs from the English edition of Wikipedia
3. We select a total of four Wikipedia pages corresponding

3https://en.wikipedia.org/wiki/Main Page



(a) Scotland Time Series (b) Hamas Time Series

(c) ISIS Time Series (d) Ebola Time Series

Figure 1: Time series of page views for the various informational elements considered in the different world events.

to major world events in recent history viz. The Scottish ref-
erendum on Independence, the Ebola outbreak, the rise and
spread of ISIS militancy, and the rise of Hamas the Pales-
tinian Islamic organization. Using an entity-tagging ap-
proach [9] that we describe in the following section, we iden-
tify a set of related Wikipedia pages for these four events.
These are illustrated in Table 1 below. We then gather time
series data on page view logs for each of these Wikipedia
pages and visually inspect these to see if there is any evi-
dence of the information seeking trends that co-evolve with
each other.

Figures 1a, 1b, 1c and 1d illustrate the number of page
views for each of the four events over a period of 1 year from
June 1, 2014 to May 31, 2015. Interestingly, we find that for
each of the focal events, while some related informational
elements co-evolve in popularity, others don’t. This poses
an interesting problem of candidate selection when making
predictions for the focal event as it is not obvious as to which
informational elements might be useful to include in the pre-

dictive models. Specifically, we seek to answer the following
two questions in this study, (i) ”Can the predictive power
of an informational element be improved by incorporating
information from related informational elements?” and (ii),
”Can we identify ”causally” related informational elements
from a set of all related elements?”

4. MODELING INTERACTION RELATION-
SHIPS BETWEEN INFORMATIONAL EL-
EMENTS

In this section, we hypothesize that informational ele-
ments such as topic pages on Wikipedia are often causally
related to each other in terms of information seeking pat-
terns. We employ a Granger causality based approach to
model these interactions between the elements.

4.1 Causality: Prior Art
Drawing causal conclusions for a set of observed variables



Event Event Description Informational Element (node ID) Wikipedia Page

Scotland
The Scottish independence referendum
on Scottish independence that took
place in Scotland on Sept 18, 2014

Yes Scotland (1) https://en.wikipedia.org/wiki/Yes Scotland
Edinburgh Agreement (2) https://en.wikipedia.org/wiki/Edinburgh Agreement %282012%29

Royal Bank of Scotland (3) https://en.wikipedia.org/wiki/The Royal Bank of Scotland
Scotland (4) https://en.wikipedia.org/wiki/Scotland

David Cameron (5) https://en.wikipedia.org/wiki/David Cameron
Alex Salmond (6) https://en.wikipedia.org/wiki/Alex Salmond

ISIS
On 29th June 2014, ISIS proclaimed it-
self to be a worldwide caliphate.

Islamic State of Iraq (1) https://en.wikipedia.org/wiki/Islamic State of Iraq and the Levant
Syria (2) https://en.wikipedia.org/wiki/Syria
Iraq (3) https://en.wikipedia.org/wiki/Iraq

David Cawthrone Haines (4) https://en.wikipedia.org/wiki/David Cawthorne Haines
Islamic State (5) https://en.wikipedia.org/wiki/Islamic state

Al-Qaeda (6) https://en.wikipedia.org/wiki/Al-Qaeda
Iraq War (7) https://en.wikipedia.org/wiki/Iraq War

David Cameron (8) https://en.wikipedia.org/wiki/David Cameron

Ebola
The Ebola outbreak began in Guinea
in December 2013 & then spread to
Liberia & Sierra Leone

Ebola virus (1) https://en.wikipedia.org/wiki/Ebola virus
Ebola Disease (2) https://en.wikipedia.org/wiki/Ebola virus disease
Ebola River (3) https://en.wikipedia.org/wiki/Ebola River

WHO (4) https://en.wikipedia.org/wiki/World Health Organization
Ebola Epidemic in Africa (5) https://en.wikipedia.org/wiki/Ebola virus epidemic in West Africa

Malaria (6) https://en.wikipedia.org/wiki/Malaria

Hamas
Israeli air force attacks Hamas targets
in central Gaza Strip

Israel (1) https://en.wikipedia.org/wiki/Israel
Gaza Strip (2) https://en.wikipedia.org/wiki/Gaza Strip

Hamas (3) https://en.wikipedia.org/wiki/Hamas
State of Palestine (4) https://en.wikipedia.org/wiki/State of Palestine

Benjamin Netanyahu (5) https://en.wikipedia.org/wiki/Benjamin Netanyahu
Fatah (6) https://en.wikipedia.org/wiki/Fatah

West Bank (7) https://en.wikipedia.org/wiki/West Bank
Iron Dome (8) https://en.wikipedia.org/wiki/Iron Dome

UN (9) https://en.wikipedia.org/wiki/United Nations

Table 1: World events and related informational elements on Wikipedia

from a given sample from their joint distribution is a fun-
damental problem. Statistical associations are often due to
underlying causal structures [26]. Research in causal dis-
covery has led to the identification of fundamental principles
and methods for causal inference, including a complete algo-
rithm, the PC algorithm, that identifies all possible orienta-
tions of causal dependencies from observed conditional inde-
pendencies [29]. Identifying such causal relations helps un-
cover dependencies between variables which could be lever-
aged for different applications, in our case, making better
predictions.

We first introduce the problem of causal inference on iid
data, as with the case with no temporal structure. Let there-
fore Xi, i ∈ V , be a set of random variables and let G be
a directed acyclic graph (DAG) on V describing the causal
relationships between the variables. The Causal Graphical
Models are usually thought of as joint probability distribu-
tions on the variables X1, ..., Xn with arrows indicating di-
rect causal influences. The causal Markov assumption states
that each vertex Xi is independent of its non-descendants in
the graph, given its parents. Crucially, this links causal se-
mantics, which is important for predicting how a system
reacts to interventions, to something that has empirically
measurable consequences. Given observations from a joint
distribution, it allows us to test conditional independence
statements and thus infer which causal models are consis-
tent with an observed distribution, subject to a genericity
assumption referred to as faithfulness.

We now turn to the case of time series data - which is of
interest in the present study, and describe a popular frame-
work to infer causal dependencies in temporal data.

4.2 G-Causality
Granger Causality [14] or ”G-Causality”, is one of the ear-

liest methods developed to quantify the temporal-causal ef-
fect among multiple time series. It is based on two major
principles: (i) the cause happens prior to the effect and (ii)

the cause makes unique changes in the effect [4]. Such a for-
mulation is based on the idea that a cause should be helpful
in predicting the future effects, beyond what can be pre-
dicted solely based on their own past values. Specifically, a
time series (or ”page view count” series in the terminology of
the present paper) x is said to Granger cause another time
series y, if and only if regressing for y in terms of both past
values of y and x is statistically significantly more accurate
than doing so with past values of y alone.

More specifically, consider two vector autoregressive pro-
cesses:

xt = Σ∞i=1a1ixt−i + u1t; var(u1t) = Σ1 (1)

and

yt = Σ∞i=1b1iyt−i + v1t; var(v1t) = Γ1 (2)

which can be viewed as linear projections of xt and yt on
their own past values, which we denote as Xt−1 and Yt−1,
respectively. The linear projection of xt on both Xt−1 and
Yt−1 and of yt on both Xt−1 and Yt−1 can be obtained from
the joint auto-regressive process:

xt = Σ∞i=1a2ixt−i + Σ∞i=1c2iyt−i + u2t; var(u2t) = Σ2 (3)

and

yt = Σ∞i=1b2iyt−i + Σ∞i=1d2ixt−i + v2t; var(v2t) = Γ2 (4)

The variance Σ1 represents the error in predicting the present
value of xt from its own past, while the variance Σ2 repre-
sents the error in predicting the present value of xt from the
past values of both Xt−1 and Yt−1. If Σ2 is less than Σ1,
then Y is said to cause X. This intuition is captured by the
causal measure [14]:

FY→X = ln(
|Σ1|
|Σ2| ) (5)

A similar measure of causality from X to Y can be computed
by symmetry. However note that in general FY→X 6= FX→Y

, due to the directionality of the flow of time.



(a) Ebola event (thresh-
old=0.01)

(b) Ebola event (thresh-
old=0.05)

(c) ISIS event (threshold=0.01) (d) ISIS event (threshold=0.05)

(e) Hamas event (thresh-
old=0.01)

(f) Hamas event (thresh-
old=0.05)

(g) Scotland event (thresh-
old=0.01)

(h) Scotland event (thresh-
old=0.05)

Figure 2: Causal network between various informational el-
ements for the different events considered.

In spite of offering an enhanced degree of flexibility, para-
metric models of regression as formulated above suffer from
potential exacerbation of performance inadequacy in cases
where the true forms of correspondence between the re-
sponse and the regressors may be non-linear. Non-parametric
pairwise Granger causality is calculated as follows: given two
point processes NX and NY , a power spectral matrix SXY is
defined as the Fourier transform of covariance of two point
processes NX , NY , which is estimated using the multitaper
function hk(tj) [22]:

SXY (f) =
1

2πKT
ΣK

k=1NX(f, k)NY (f, k)∗ (6)

where

NX(f, k) =

∫ T

0

hk(t)exp(i2πft)dNX(t) (7)

and SXY is factorized by Wilson’s algorithm [35] as follows:

SXY (f) = HXY (f)ΣXYH
∗
XY (f) (8)

where HXY is the transfer function which corresponds to
the coefficients of an AR model, Σ corresponds to covariance
matrix of error term of AR model and ∗ represents a conju-
gate transpose. Non-parametric pairwise Granger causality
of FNY→NX for frequency f is finally calculated as:

FNY→NX (f) = ln
SXX(f)

SXX(f)− (ΣY Y −
Σ2

XY
ΣXX

)|HXY (f)|2
(9)

We next describe our approach of using this notion of tempo-
ral causality in analyzing the interdependencies among the
different informational elements.

5. EXPERIMENTAL SETUP
To investigate the implications of incorporating causal

linkage information among informational elements, we con-
sider a set of worldwide events as described in Table 1. For
each of these events, we take a New York Times summary
article which provides a descriptive summary of the event
and use the content of the NYT article to extract the set of
informational elements via entity extraction as described in
Subsection 5.2 below. We next describe in detail the dataset
construction and causal graph construction technique.

5.1 Dataset Description
The data used for this study is a time-series dataset on

the number of daily page views for the English version of
Wikipedia. Wikipedia not only allows its users instant ac-
cess to information on virtually any topic of interest, but also
provides usage metadata (e.g. page views, page edits etc.)
through its periodic data dumps. The page view statistics
we use for our study were collected from Wikimedia data
servers 4 which were made more accessible through an ex-
ternal web application 5. We collect daily page views for the
period of June 1, 2014 to May 31, 2015 for the event pages
on Wikipedia, as well as for the related pages as listed in
Table 1 earlier.

4http://dumps.wikimedia.org/other/pagecounts-raw/
5http://stats.grok.se/



1% 5% 10% Common Baselines
G-Causal Shuffle G-Causal Shuffle G-Causal Shuffle Shuffle (all edges) No edges

Scotland 1693.8 3536.1 1693.8 3550.4 1693.8 2484.4 4715.3 5001.9
ISIS 1395.2 1419.2 1395.2 1419.2 1395.2 1419.2 3405.2 3575.1

Ebola 295.6 302.02 295.6 294.8 295.6 302.0 6171.6 6152.5
Hamas 3419.5 3463.2 3419.56 3419.5 3419.5 3446.5 2652.1 2705.9

Table 2: Prediction estimates on the different events considered. RMSE values are reported for the proposed Causal approach
and the different baselines considered. Row headers indicate the level of statistical significance considered.

5.2 Entity Extraction
The entity linking task aims at identifying all the small

text fragments in a document referring to a particular en-
tity contained in a given knowledge base, e.g., Wikipedia.
The annotation is usually organized in three tasks. Given
an input document, the first task involves discovering the
fragments that could refer to an entity. Second, since an
individual mention could refer to multiple entities, it is nec-
essary to perform a disambiguation step, where the correct
entity is selected among all possible candidates. Third and
finally, discovered entities are ranked by some measure of
relevance. More specifically, we use Dexter [8, 9] to link the
events considered with entities. Dexter, in turn relies on
DBPedia for entities and their type information.

The entities extracted via this technique are mapped to
corresponding Wikipedia pages and the page view statistics
are obtained for each of these entities. As discussed before,
we treat these Wikipedia entities as the specific instance
of informational elements and base our work on predictions
and recommendations around these Wikipedia entities.

5.3 GCausal Graph Construction
We formalize our set of 4 focal events using a vector Event
{Scotland, Ebola, ISIS, Hamas}. Each element Eventi is as-
sociated with a list of related informational elements as listed
earlier in Table 1. Drawing on our discussion of Granger
causality in Sec. 4.2, we perform bivariate Granger casual-
ity tests on every pair of informational elements in Eventi
and obtain a n(Eventi) × n(Eventi) causal adjacency ma-
trix (CAM ) for each focal element Eventi where n(Eventi)
is the number of informational elements related to the fo-
cal event, including the informational element for the page
itself. Each entry (m,n) in CAM represents the statistical
significance of the non-parametric G-causality test between
informational elements m and n. Next, we prune this adja-
cency matrix to remove all edges where the statistical sig-
nificance is below certain level of significance. The resulting
G-causal graphs for the four events at 1% and 5% levels of
significance are shown in Fig. 2 where the node labels cor-
respond to the IDs mentioned within parentheses alongside
the informational elements in Table 1.

6. PREDICTION EXPERIMENT
In this section, we implement a G-Causality model based

on the causal network identified, and fit it to the observed
page-view data from Wikipedia. In order to emphasize the
value proposition of incorporating the causal linkages, we
baseline our results against that from a shuffle-test which
replaces the causal predictors with a randomly selected, but
informationally related predictor.

6.1 Predicting Page Popularity
In this section, we illustrate the predictive value of incor-

porating causal relationships between related informational
elements as depicted in Fig. 2. For each informational ele-
ment in Eventi, we choose the best predictor based on the
G-causality test results as explained in Sec. 4.2. The best
predictor for each target node is selected by comparing the
F-statistics across the bivariate causality tests for every pair
of nodes. We apply a time-series technique, namely, Vec-
tor Autoregressive Model (VARX) which captures dynamic
feedback effects [12, 18, 1]. The model specification has been
described earlier in Sec. 4.2.

This modeling approach allows us to explain the volume of
page views for a particular informational element as a func-
tion of the volume of page views from past years of the same
informational element, as well as the volume of page views
of the ”most related” informational element. The ”most re-
lated” informational element is selected as the best predict-
ing element, mentioned above. The root-mean-square of the
estimation residuals are described in Table 2 above.

6.2 Baselines: Shuffle Test
We emphasize the benefits of uncovering causal predictors,

using an edge shuffle test, similar to the one described in [2].
Specifically, we randomize the predictor nodes for each tar-
get node in our G-causal graph, by choosing randomly from
a set of all candidate predictors including but not limited to
the best predictor. We hypothesize that if there is no advan-
tage to including best predictors from related informational
elements, the shuffle test should not provide any significant
reduction in predictive accuracy. The RMSE of model resid-
uals from the shuffle test are provide alongside the RMSE
of our G-causal model in Table 2 above. The common base-
lines include two cases viz. first, when the causal graph is
not pruned based on the significance level and shuffling is
performed on all edges, and second, when no causal graph
is constructed and each variable is predicted only using an
auto-regressive model.

6.3 Results & Discussions
As evident from our experiment results, incorporating in-

formation about related best predicting information elements
provides an improvement in prediction accuracy over related
but weak predicting information elements. Thus, while we
contend that related information elements are useful pre-
dictors of popularity of the focal information element, it is
important to identify the best predicting elements from the
pool of all related elements. The choice of the best pre-
dicting element is often non-obvious and requires statistical
causality tests for its identification. We show in Table 2
that the results from our causal prediction model outper-
forms results from the shuffle test model for all information
elements, across almost all levels of significance.



Causal 0.01 Causal 0.05 Shuffle Content
Relatedness

Related 70%* 63% 60% 67%
Somewhat Related 20% 23% 17% 30%

Not Related 10% 14% 23% 3%
Interestingness

Interesting 73%* 67% 57% 63%
Somewhat Interesting 20% 23% 17% 20%

Not Interesting 7% 10% 26% 17%
Informativeness

Informative 63%* 63%* 50% 57%
Somewhat Informative 33% 27% 40% 37%

Not Informative 4% 10% 10% 6%

Table 3: Performance in terms of Relatedness, Interestingness & Informativeness for the Wikipedia page recommendation
task. The results highlighted with * signify statistically significant difference between the proposed Causal recommendation
framework and the best performing baseline using χ2 test with p ≤ 0.05.

7. RECOMMENDATION JUDGMENT STUDY
In addition to the prediction experiments, we evaluate the

prowess of the proposed causal graph in making causal rec-
ommendations. We build the causal graph and use the meth-
ods proposed in Section 4, along with other baselines to gen-
erate Wiki page recommendations and perform a judgment
study to evaluate the quality of recommendations. Next,
we discuss the methodology and findings from the judgment
study in detail.

7.1 Research Questions
To assess the quality of our casual graph for content rec-

ommendation, we performed crowd-sourced assessments with
human annotators to seek answers to the following research
questions:

RQ1: Relatedness: Are the recommended Wiki pages
related to the original page? Relatedness is important since
readers are unlikely to be interested in unrelated suggestions.

RQ2: Interestingness: Will readers be interested in
exploring the recommended Wiki page given their original
Wiki page visit? Interestingness is important since we are
not trying to propose replacement or surrogates of the cur-
rent page. Hence, a reader is likely to be interested in the
suggestions if they are both related and novel.

RQ3: Informativeness: Are the recommendations in-
trinsically informative? Informativeness is an important char-
acteristic since and it is preferable to avoid redundancy in
recommendations, while at the same time suggest Wiki pages
which provide some additional information to the reader who
was interested in reading the original Wiki page.

7.2 Study Methodology
Given an event, we have a list of related informational ele-

ments and the Granger causal graph among these elements.
The premise of this study is to show that these causal graphs
can be used to improve content recommendations. In order
to do so, we structure this judgment study in the follow-
ing way: a user is shown contents from an initial wiki page
(i.e. a base Wiki page) following which she is shown one

recommended Wiki page based on the method being evalu-
ated. We populate the set of recommend Wiki pages using
the proposed Granger Causal graph as well as the baselines.
The suggestions were labeled by judges who were recruited
to participate in the judgment study. We used hidden qual-
ity control questions to filter out poor-quality judges. We
had three judges in total, with each judge being shown a
base Wiki page and asked to rate the recommended Wiki
page on a number of measures evaluating the different as-
pects of recommendations. The procedure involving all the
30 informational elements, 4 different methods and the three
measures yielded a total of 360 judgments.

The objective of this judgment study was to evaluate the
quality of the recommendations, and answer RQ1 - RQ3 de-
scribed above. As comparator methods, we generate and
compare suggestions using the following techniques, which
includes variations of the parameters in the proposed meth-
ods and some other methods used as baselines in the study.

• Granger Causal graph based (2 variants): Using
the Granger Causal graph constructed, we take note of
the directed relationships from the original Wiki page
shown to the user and select the recommended page
from the set of elements (Wiki pages) which had a
directed link from the original wiki page in the causal
graph constructed for the event (Fig. 2).

• Content based: Making use of content overlap be-
tween the base Wikipedia page and the recommended
Wiki page, this baseline makes recommendations based
on the most similar page to the current base Wiki page
being viewed by the user. Intuitively, such recommen-
dations should score well in terms of relatedness based
measures and provide informative resources to users.

• Shuffle Test based: For this baseline, we make use
of the linkage graph obtained via the shuffle test and
recommend Wiki page which has a directed link from
the original base Wiki page in the graph obtained in
the Shuffle test as described in 6.2.

For every method, we show a maximum of 4 recommen-
dations to judges and the judges were asked to judge the
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Figure 3: Analyzing the temporal evolution of causal linkages.

1% 5% 10%
Pre 1 Pre 2 Post 1 Post 2 Pre 1 Pre 2 Post 1 Post 2 Pre 1 Pre 2 Post 1 Post 2

Degree 2.8 2.4 2 1.5 2.8 2.4 2 1.5 2.8 2.4 2 1.5
Closeness 0.06 0.064 .75 0.75 0.082 0.068 0.278 0.133 0.139 0.092 0.133 0.188

Betweenness 0 0 0 0 0.2 0 0.33 0.5 0.8 0.4 0.25 0.25

Table 4: Centrality measures for the different stages of SOPA event.

recommendations on the following dimensions on a three-
point scale:

Relatedness: Suggestions are: (1) Related : all suggestions
are related to the original Wiki page; (2) Somewhat Related :
many suggestions are related to the original Wiki page; or
(3) Not Related : most or all of the suggestions are not re-
lated to the original Wiki page.

Interestingness: Suggestions are: (1) Interesting : all sug-
gestions are interesting given the original page; (2) Some-
what Interesting : many suggestions are interesting; or (3)
Not Interesting : most or all suggestions are uninteresting.

Informativeness: Suggestions are: (1) Informative: all
suggestions are informative given the original page; (2) Some-
what Informative: many suggestions are informative; or (3)
Not Informative: most or all suggestions are uninformative
given the contents of the original Wiki page.

Since most judges label largely disjoint sets of aspects,
we do not report the standard Cohen’s kappa for inter-
annotator agreement. Instead, we report label agreement,
which was 89.4%, 81.4% and 84.0% for relatedness, interest-
ingness and informativeness respectively. This level of agree-
ment demonstrates that judgment variance is quite small,
and increases our confidence in the reliability of the judg-
ments for evaluating our methods.

7.3 Findings
Table 3 shows the percentage of each response for the

proposed methods and baselines in terms of relatedness, in-
terestingness and informativeness.

Relatedness: The table shows that the causality based
methods perform the best in terms of relatedness of the rec-
ommended Wiki page with the best performing method be-
ing Causal model with threshold 0.1. It is interesting to
note that the content based recommendation performs bet-
ter than Shuffle test based recommendation and Causal 0.5.

This is not as surprising since a method that tries to find a
related Wiki page which overlaps with the base Wiki page
in terms of words, is bound to find a page which is very sim-
ilar in terms of content. However, incorporating the causal
aspect improves the score further to 70%.

Interestingness: Interestingness is a more important mea-
sure than relatedness given that one of the contributions
of this user study is in devising techniques to better rec-
ommend Wikipedia pages to read. Like relatedness, we
notice that the proposed causality based methods outper-
form all other baselines and with a bigger difference. Unlike
Relatedness, both the causality based approaches beat the
Content based and Shuffle test based recommendation base-
lines. This shows that incorporating causal linkages informa-
tion while making recommendation indeed helps recommend
more interesting content.

Informativeness: In terms of informativeness, the overall
percentages obtained are less than those for relatedness and
interestingness: 63% as compared to 70% & 73% but we
do observe that the proposed causal based approaches out-
perform the baselines and hence recommend Wiki content
which is more informative.

Overall, the findings of this analysis show that the Wiki
page recommendations generated using our methods yield
significant gains over the baselines in a number of important
measures of recommendation value. This supports our claim
that incorporating causal linkage information embedded in
the information seeking behavior of the crowd helps uncover
hidden insights which could be leveraged to make better
recommendations of content.

8. TEMPORAL EVOLUTION OF CAUSAL
LINKAGES

In the previous sections, we have established the impor-
tance of understanding causal linkages between related in-
formational elements in predicting the information seeking



behavior of Internet users. However, we also hypothesize
that these linkages are highly dynamic and often sensitive
to major external events. To put it in different words, the
causal networks for the focal events would evolve in a way
that new linkages would emerge, while older linkages would
lose strength and gradually disappear. To empirically in-
vestigate whether the causal graphs are indeed dynamic, we
exploit a major World event to analyze whether the infor-
mation seeking of event related pages show any short-run
and long-run changes.

8.1 Event Context
On Jan 18, 2012, a number of major Internet-based orga-

nizations including Google, Wikipedia, Reddit etc. coordi-
nated a series of protests against two proposed laws in the
US Congress viz. the Stop Online Piracy Act (SOPA) and
the Protect IP Act (PIPA). As part of the protest, some
of the websites shut down their services and directed their
users to a page displaying a protest message. This effect
was clearly noticed, and within hours, other companies like
Mozilla and Flickr joined in. The event triggered significant
public participation with over 8 million people looking up
their representatives on Wikipedia, and Twitter recording
over 2.4 million anti-SOPA tweets. Giving in to popular
opinion, both bills were finally removed from further voting
by Jan 20, 2012.

8.2 Causal Linkages
Using our methodology as described in Sec.5.3, we con-

structed Granger causal graphs for the SOPA-blackout re-
lated informational elements, as shown in Fig. 3. In order
to investigate the evolution of the causal graphs, we con-
structed these graphs at four different time stamps viz. (i)
two months before the blackout (Pre 1) , (ii) a week be-
fore the blackout (Pre 2), (iii) a week after the blackout
(Post 1), and (iv) two months after the blackout (Post 2).
A simple visual inspection of the Figure 3 uncovers signifi-
cant changes in the causal nature of linkages across the four
periods. Beyond the change in network composition, we also
perform centrality analysis [34] on the information elements
in the graphs to verify if the overall centrality of the causal
graph also changes over time. The centrality measures of
degree, betweenness and closeness have been popularly used
in the social networks literature as proxies to characterize
the importance of the members of the social network. The
results for the sociometrics are illustrated in Table 4 and
confirm our hypothesis that both the composition of the
causal graph, as well as the relative importance of the nodes
change in response to major external events.

9. CONCLUSION & FUTURE WORK
Our research offers an early attempt at proposing a method

to identify and incorporate causal linkages among informa-
tional elements on the Internet. The user access logs on
information repositories like Wikipedia offer an invaluable
source of data about the information seeking behavior of
users. We demonstrate that such logs can be effectively ex-
ploited to uncover causal relationships among informational
elements, that are not always obvious from a model-free
analysis of the data. We highlight the incremental bene-
fits to incorporating such causal information in our predic-
tive model, over baseline approaches that ignore such causal
linkages by randomizing the causal network. We then pro-

vide converging evidence from a judgment study where we
asked human annotators to judge pairs of Wikipedia pages
on Relatedness, Interestingness and Informativeness. Con-
sistent with our predictions, we found that when users were
exposed to pairs of pages that had causal linkages, they rated
their experience more favorably as compared to those users
who were exposed to a random pair of pages.

In addition to the predictive value of causal linkages, we
also emphasize that this causal network among informa-
tional elements is not static, and is sensitive to major ex-
ternal events. Using the much popularized SOPA internet
blackout as a test case, we demonstrated how the causal
network changed at 4 different time periods before and after
the event. An important recommendation we make based on
this observation is that any predictive model for information
seeking on the Internet must inherently be a dynamic one,
and would need to be updated after major world events that
are likely to influence the focal informational element.
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