

Sparse Coding

Rishabh Mehrotra

2008B4A7533P

14
th
 October, 2011.

Abstract

Sparse modelling calls for constructing efficient representations of data as a combination of a few

typical patterns (atoms) learned from the data itself. Significant contributions to the theory and

practice of learning such collections of atoms (usually called Dictionaries), and of representing the

actual data in terms of them, have been made thereby leading to state-of-the-art results in many signal

and image processing and data analysis tasks. Sparse Coding is the process of computing the

representation coefficients x based on the given signal y and the given dictionary D. Exact

determination of sparsest representations proves to be an NP-hard problem [1]. This report briefly

describes some of the approaches in this area, ranging from greedy algorithms to 𝑙1-optimization all

the way to simultaneous learning of adaptive dictionaries and the corresponding representation vector.

1. Problem Statement:

Using a dictionary
1
 matrix 𝑫 ∈ 𝑹𝒏𝑿𝒌 that contains k atoms, 𝒅𝒋 𝒋=𝟏

𝒌
 as its columns, a signal y (∈ 𝑹𝒏)

can be represented as a sparse linear combination of these atoms, the solution of which may either be

exact (y=Dx) or approximate (y≈Dx). The vector x (∈ 𝑹𝒌) expresses the representation coefficients

of the signal y. The problem at hand is finding the sparsest representation, x which is the solution of

either:

𝐦𝐢𝐧𝒙 𝒙 𝒐 subject to y = Dx (1)
Or

 𝐦𝐢𝐧𝒙 𝒙 𝒐 subject to 𝒚 − 𝑫𝒙 𝟐 ≤ 𝝐 (2)

where . 𝑜 is the 1𝑜 norm, counting the nonzero entries of a vector.

2. Solution Approaches

This section briefly describes few noted approaches to this problem, followed by detailed description

of one of the prominent solution (K-SVD algorithm) in the next section.

2.1 Matching Pursuit

Mallat[2] proposed a greedy solution which successively approximates y with orthogonal projections

on elements of D. The vector y (∈ 𝐻,Hilbert Space) can be decomposed into

𝒚 = < 𝑦, 𝒈𝜸𝟎
> 𝒈𝜸𝟎

+ 𝑹𝒚

1
 Note: The dictionary we refer to on this report is an Overcomplete Dictionary, with k>n.

Where Ry is the residual vector after approximating y in the direction of 𝑔𝛾0
. 𝑔𝛾0

 being orthogonal to

Ry, hence

 𝒚 𝟐 = < 𝑦, 𝒈𝜸𝟎
>

𝟐
+ 𝑹𝒚 𝟐.

To minimize Ry we must choose 𝑔𝛾0
∈ 𝐷 such that |< 𝑦, 𝑔𝛾0

> | is maximum. In some cases it is only

possible to find 𝑔𝛾0
 that is almost the best in the sense that

 < 𝑦, 𝒈𝜸𝟎
> ≥ 𝜶 𝒔𝒖𝒑𝜸∈𝝉 < 𝑦, 𝒈𝜸𝟎

>

 where α is an optimality factor that satisfies 0≤α≤ 𝟏.

A matching pursuit is an iterative algorithm that sub-decomposes the residue Ry by projecting it on a

vector of D that matches Ry at its best, as was done for y. This procedure is repeated each time on the

following residue that is obtained.

 It has been shown that it performs better than DCT based coding for low bit rates in both efficiency

of coding and quality of image. The main problem with Matching Pursuit is the computational

complexity of the encoder. Improvements include the use of approximate dictionary representations

and suboptimal ways of choosing the best match at each iteration (atom extraction).

2.2 Orthogonal Matching Pursuit (OMP)

In Pati[3] , the authors propose a refinement of the Matching Pursuit (MP) algorithm which improves

convergence using an additional orthogonalization step.

As compared to MP, this method performs an additional computation of k
th
-order model for y,

 𝒚 = 𝒂𝒏
𝒌𝒙𝒏

𝒌
𝒏=𝟏 + 𝑹𝒌𝒚 ,

with <𝑹𝒌, 𝒙𝒏> = 0, n=1...k.

Since the elements of D are not required to be orthogonal, to perform such an update, an auxillary

model for dependence of 𝑥𝑘+1 on 𝑥𝑘 would be required, which is given by

 𝒙𝒌+𝟏 = 𝒃𝒏
𝒌𝒙𝒏

𝒌
𝒏=𝟏 + 𝜸𝒌

with <𝜸𝒌, 𝒙𝒏> = 0 for n=1...k.

For a finite dictionary with N elements, OMP is guaranteed to converge to the projection onto the

span of the dictionary elements in a maximum of N steps.

2.3 Basis Pursuit

Basis Pursuit (BP) is an optimization problem, not an algorithm. The authors in [4] have tried to

model the Sparse Coding problem as a BP problem. In the BP approach, the sparsest solution in the 𝐿1

sense is desired. BP is a mathematical optimization problem of the type:

𝒎𝒊𝒏𝒙
𝟏

𝟐
 𝒀 − 𝑫𝑿 𝟐

𝟐

 + 𝜸 𝒙 𝟏 − (𝟑)

Where 𝛾 is a parameter that controls the trade-off between sparsity and reconstruction fidelity. BP

requires the solution of a convex, non-quadratic optimization problem. BP can be seen as minimizing

an objective that penalizes the reconstruction error using a linear basis set and the sparsity of the

corresponding representation.

Any algorithm from the Linear Programming literature can be used to solve the BP optimization

problem, hence finding the sparse representation. Both the interior points method and simplex are

used in [4] to solve this problem.

2.4 Iterative Shrinkage-Thresholding Algorithm (ISTA)

In [5] authors have modelled the 𝐿1 constrained sparse coding model presented as eq. (3) above as a

general formulation :

Min { F(x) ≡ f(x) + g(x) : x∈ 𝑹𝒏 }

Where g(x) is a continuous non-convex function which is possibly non-smooth and f(x) is a

convex smooth function with gradient which is Lipschitz continuous, ie, there exist a constant

L(f) such that

 𝜵𝒇 𝒙 − 𝜵𝒇 𝒚 ≤ 𝑳 𝒇 ||𝒙 − 𝒚||

The general step for ISTA is of the form:

𝒙𝒌+𝟏 = 𝒑𝒓𝒐𝒈𝒕𝒙
 𝒈 𝒙𝒌 − 𝒕𝒌𝛁𝒇 𝒙𝒌 − (𝟒)

Where prog operator is defined by

𝒑𝒓𝒐𝒈𝒕𝒙
 𝒈 = 𝒂𝒓𝒈𝒎𝒊𝒏𝒖 {𝒈 𝒖 +

𝟏

𝟐
 𝒖 − 𝒙 𝟐}

When g(x)=0 prog is just the identity operator and ISTA is equivalent to the gradient method. Using

the defined formulation, the sparse coding equation (3) cn be modelled as ISTA formulation and

sparse representation x can be sought. It is to be noted that F(𝑥𝑘) converges to the optimal value 𝐹∗

with the rate of convergence equalling O(1 𝑘).

2.5 Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

In [6] authors present an improved version of ISTA which has a convergence rate of O(1
𝑘2) as

compared to O(1 𝑘). The main difference between FISTA and ISTA is that that the iterative-

shrinkage step (4) is not employed on the previous point 𝒙𝒌−𝟏, but rather at the point 𝒚𝒌, which uses a

very specific linear combination of the previous two points { 𝒙𝒌−𝟏, 𝒙𝒌 }.

𝒙𝒌 = 𝒑𝒓𝒐𝒈𝒕𝒙
 𝒈 𝒚𝒌 − 𝒕𝒌𝛁𝒇 𝒙𝒌

Readers are directed to [6] for the proof of the O(1
𝑘2) convergence rate of this algorithm. Thus,

FISTA preserves the computational simplicity of ISTA, but with a global rate of convergence which

is proven to be significantly better, both theoretically and practically.

Note:

Apart from the Sparse Coding algorithms described above, some algorithms are also able to learn the

set of basis functions (ie, elements of dictionary D). The learning procedure finds the B matrix that

minimizes the same loss of eq. (3). The columns of D are constrained to have unit norm in order to

prevent trivial solutions where the loss is minimized by scaling down the coefficients while scaling up

the bases. Learning proceeds by alternating the optimization over Z to infer the representation for a

given set of bases B, and the minimization over B for the given set of optimal Z found at the previous

step.

The following two algorithms find the dictionary along with finding the sparse representations for the

learnt dictionary.

2.6 K-SVD Algorithm

K-SVD is an iterative method that alternates between sparse coding of the examples based on the

current dictionary and a process of updating the dictionary atoms to better fit the data. The update of

the dictionary columns is combined with an update of the sparse representations, thereby accelerating

convergence. The K-SVD algorithm is flexible and can work with any pursuit method (e.g., basis

pursuit, FOCUSS, or matching pursuit).

Detailed description of the K-SVD algorithm is given in Section 3.

2.7 Predictive Sparse Decomposition

I order to make inference efficient, the authors[7] train a non-linear regressor that maps a input

patches Y to sparse representations X. The following non-linear mapping is considered:

F(Y; G,W,D) = G tanh(WY+D)

Where W is the filter matrix, D is the dictionary and G is the diagonal matrix of gain coefficients

allowing the outputs of F to compensate for the scaling of input Y. Let 𝑃𝑓 denote the parameters

leaned in this predictor, 𝑃𝑓= {G,W,D}. The goal of the algorithm is to make the prediction of the

regressor F(Y;𝑃𝑓) as close as possible to the optimal solution of the representation X. The resulting

loss function can be framed (based on eq. (3) defined in 2.3):

L(Y,Z;B, 𝑷𝒇) = 𝒀 − 𝑫𝑿 𝟐
𝟐

 + 𝜸 𝑿 𝟏 + 𝜶 𝑿 − 𝑭(𝒀; 𝑷𝒇)

𝟐

𝟐
 -(5)

Minimizing this loss with respect to X produces a representation that simultaneously reconstructs the

patch, is sparse, and is not too different from the predicted representation.

Learning the parameters 𝑃𝑓 proceeds by an on-line block coordinate gradient descent algorithm. Once

the parameters have been learnt, inference can be done by Optimal Inference consisting of setting the

representation to

 𝑿∗=𝒂𝒓𝒈𝒎𝒊𝒏𝑿 𝑳

by running an iterative gradient descent algorithm.

3. K-SVD Algorithm: Detailed Description

Given a set of examples Y = [𝑦1 𝑦2 ... 𝑦𝑛], the goal of the K-SVD [8] is to find a dictionary D and a

sparse matrix X which minimize the representation error,

𝒂𝒓𝒈𝒎𝒊𝒏𝑫,𝑿 𝒀 − 𝑫𝒙 𝑭
𝟐 subject to 𝒙𝒊 𝟎

𝟎 ≤ 𝑻 ∀𝒊

where 𝒙 represent the columns of X, and the 𝐿0 sparsity measure; . 𝟎
𝟎 counts the number of non-

zeros in the representation.

The K-SVD algorithm alternates between two phases:

 Sparse Coding Phase

 Dictionary Update Phase

The sparse-coding is performed for each signal individually using any standard technique. The main

contribution of the K-SVD is that the dictionary update, rather than using a matrix inversion, is

performed atom-by-atom in a simple and efficient process.

Let us first consider the sparse coding stage, where we assume that is fixed, and consider the above

optimization problem as a search for sparse representations with coefficients summarized in the

matrix . The penalty term can be rewritten as:

 𝒀 − 𝑫𝑿 𝑭
𝟐

 = 𝒀 − 𝑫𝒙𝒊 𝟐

𝟐𝑵
𝒊=𝟏 -(6)

The problem posed in (6) above can be decoupled to N distinct problems of the form:

 𝒎𝒊𝒏𝒙𝒊
 𝒚𝒊 − 𝑫𝒙𝒊 𝟐

𝟐 subject to 𝒙𝒊 𝟎
 ≤ 𝑻𝟎 𝒇𝒐𝒓 𝒊 = 𝟏, 𝟐, … . , 𝑵

This problem is adequately addressed by the pursuit algorithms discussed in Section 2 above, and we

have seen that if is small enough, their solution is a good approximation to the ideal one that is

numerically infeasible to compute.

We now turn to the second, and slightly more involved, process of updating the dictionary D together

with the nonzero coefficients X. Assume that both X and D are fixed and we put in question only one

column in the dictionary 𝑑𝑘 and the coefficients that correspond to it, the k-th row in X, denoted as

𝑥𝑇
𝑘 (this is not the vector which is the k-th column in X). Returning to the objective function eq. (6),

the penalty term can be rewritten as:

 𝒀 − 𝑫𝒙 𝑭
𝟐 = 𝒀 − 𝒅𝒋𝒙𝑻

𝒋𝑲
𝒋=𝟏

𝑭

𝟐

 = 𝒀 − 𝒅𝒋𝑿𝑻
𝒋

𝒋≠𝒌 − 𝒅𝒌𝒙𝑻
𝒌

𝑭

𝟐

 = 𝑬𝒌 − 𝒅𝒌𝒙𝑻
𝒌

𝑭

𝟐
 − (𝟕)

We have decomposed the multiplication DX to the sum of k rank-1 matrices. Among those, k-1 terms

are assumed fixed, and one—the k
th
 —remains in question. The matrix 𝐸𝑘 stands for the error for all

the N examples when the k-th atom is removed.

Here, it would be tempting to suggest the use of the SVD to find alternative 𝑑𝑘 and 𝑥𝑇
𝑘 . The SVD

finds the closest rank-1 matrix (in Frobenius norm) that approximates 𝐸𝑘 , and this will effectively

minimize the error. However, such a step will be a mistake, because the new vector 𝑥𝑇
𝑘 is very likely

to be filled, since in such an update of we do not enforce the sparsity constraint.

A remedy to the above problem, however, is simple and also quite intuitive. Defining 𝜔𝑘 as the group

of indices pointing to the examples {𝒚𝒊}that use the atom 𝑑𝑘 , ie those where 𝑥𝑇
𝑘 is zero.

𝝎𝒌 = {𝒊 ∶ 𝟏 ≤ 𝒊 ≤ 𝑲, 𝑿𝑻
𝒌 𝒊 ≠ 𝟎}

 𝛺𝑘 is defined as the matrix of size 𝑁 × 𝜔𝑘 with ones on the (𝜔𝑘 𝑖 , 𝑖)𝑡𝑕 position and zeroes

elsewhere.

When multiplying 𝑋𝑅
𝑘 = 𝑋𝑇

𝑘𝛺𝑘 , this shrinks the row vector 𝑥𝑇
𝑘 by discarding of the zero entries,

resulting with the row vector 𝑥𝑅
𝑘 of length 𝜔𝑘 .

Thus the equation (7) becomes:

 𝑬𝒌𝜴𝒌 − 𝒅𝒌𝑿𝑻
𝒌𝜴𝒌 𝑭

𝟐
= 𝑬𝒌

𝑹 − 𝒅𝒌𝑿𝑹
𝒌

𝑭

𝟐

and SVD can be used to find the final solution. The K-SVD algorithm takes its name from the

Singular- Value-Decomposition (SVD) process that forms the core of the atom update step, and which

is repeated K times, as the number of atoms.

The authors have shown that the dictionary found by the -SVD performs well for both synthetic and

real images in applications such as filling in missing pixels and compression and outperforms

alternatives such as the non-decimated Haar and overcomplete or unitary DCT. K-SVD has been

successfully applied to learn sparse representation for Sentiment Classification tasks as well. Refer

[9][10] for details.

References

1- G. Davis, S. Mallat, and M. Avellaneda, ―Adaptive greedy approximations,‖ J. Construct. Approx.,

vol. 13, pp. 57–98, 1997.

2- S. G. Mallat and Z. Zhang, Matching Pursuits with Time-Frequency Dictionaries, IEEE

Transactions on Signal Processing, December 1993, pp. 3397-3415.

3- Orthogonal Matching Pursuit- Recursive Function Approximation with Applications to Wavelet

Decomposition, 27
th
 Annual Conference on Signal Systems, Nov 1-3, 1993.

4- S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by basis pursuit. SIAM

Review, 43(1):129– 159, 2001.

5- I. Daubechies, M. Defrise, and C. De Mol, ―An iterative thresholding algorithm for linear inverse

problems with a sparsity constraint,‖ Comm. Pure Appl. Math., vol. 57, no. 11, pp. 1413–1457, 2004.

6- A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse

problems. 2009. ICASSP (2009).

7- K. Kavukcuoglu, M. Ranzato, and Y. LeCun.(2010) Learning Fast Approximations of Sparse

Coding. In proceedings of 27
th
 International Conference of Machine Learning, 2010.

8- M. Aharon, M. Elad, and A. M. Bruckstein, (2006) ―The K-SVD: An algorithm for designing of

overcomplete dictionaries for sparse representations,‖ IEEE Trans. Image Process., vol. 54, no. 11,

pp. 4311–4322, Nov. 2006.

9- R Mehrotra, SA Haider, AS Mandal (2011). ― Adaptive Dictionary Learning for Sentiment

Classification & Domain Adaptation‖ In Proceedings of 16th Conference on Technologies and

Applications of Artificial Intelligence, 2011, Taiwan.

10- J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discriminative learned dictionaries for

local image analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2008a.

